Skip to main content
Math Relative position of lines Angle between two lines

Angle between two lines

The angle between two lines is calculated similarly as the angle between two vectors.

!

Remember

In contrast to vectors, the angle between two lines always discribes the angle less than 90°.

Two lines are given:

$\text{g: } \vec{x} = \vec{u} + r \cdot \vec{a}$

$\text{h: } \vec{x} = \vec{v} + s \cdot \vec{b}$

For determining the angle the direction vectors of the lines are used:

$\cos(\gamma) = \frac{|\vec{a}\cdot\vec{b}|}{|\vec{a}|\cdot|\vec{b}|}$

$\gamma = \cos^{-1}\left(\frac{|\vec{a}\cdot\vec{b}|}{|\vec{a}|\cdot|\vec{b}|}\right)$
i

Method

  1. Calculate the scalar product of the direction vectors
  2. Calculate the magnitude of the direction vectors
  3. Insert results into the formula

Example

$\text{g: } \vec{x} = \begin{pmatrix} 10 \\ 9 \\ 7 \end{pmatrix} + r \cdot \begin{pmatrix} 9 \\ 8 \\ 7 \end{pmatrix}$

$\text{h: } \vec{x} = \begin{pmatrix} 4 \\ 4 \\ 6 \end{pmatrix} + s \cdot \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$

  1. Calculate scalar product

    $\vec{a}\cdot\vec{b}$ $=\begin{pmatrix}9 \\ 8 \\ 7 \end{pmatrix}\cdot\begin{pmatrix}1 \\ 1 \\ 2\end{pmatrix}$ $=9\cdot1+8\cdot1+7\cdot2$ $=31$
  2. Calculate magnitude of the direction vectors

    $|\vec{a}|=\sqrt{9^2+8^2+7^2}$ $=\sqrt{194}$

    $|\vec{b}|=\sqrt{1^2+1^2+2^2}$ $=\sqrt{6}$
  3. Insert results into the formula

    $\cos(\gamma) = \frac{|\vec{a}\cdot\vec{b}|}{|\vec{a}|\cdot|\vec{b}|}$

    $\cos(\gamma) = \frac{31}{\sqrt{194}\cdot\sqrt{6}}$

    $\gamma = \cos^{-1}\left(\frac{31}{\sqrt{194}\cdot\sqrt{6}}\right)$ $\approx24.68°$