Skip to main content
Math Definite integral Rules

Rules for definite integrals

When solving definite integrals, there are some rules that you should be able to apply.

  1. Same lower and upper limit

    $\int_a^a f(x) \, \mathrm{d}x=0$
  2. Reversing the limits

    $\int_a^b f(x) \, \mathrm{d}x$ $=-\int_b^a f(x) \, \mathrm{d}x$
  3. Additive interval

    $\int_a^b f(x) \, \mathrm{d}x + \int_b^c f(x) \, \mathrm{d}x$ $=\int_a^c f(x) \, \mathrm{d}x$

The constant factor rule and sum rule for indefinite integrals are also valid for the definite integrals.

  1. Constant factor rule

    $\int_a^b k\cdot f(x) \, \mathrm{d}x$ $= k\cdot \int_a^b f(x) \, \mathrm{d}x$
  2. Sum rule

    $\int_a^b (f(x)+g(x)) \, \mathrm{d}x$ $= \int_a^b f(x) \, \mathrm{d}x + \int_a^b g(x) \, \mathrm{d}x$