Skip to main content
Math Calculating areas with integrals Calculating areas by partitioning the interval

Calculating areas by partitioning the interval

An exception to calculating areas are functions with sign changes in the interval $[a; b]$. This means that the area is partly above and partly below the x-axis.

!

Remember

If the area you are looking for is both above and below the x-axis, you must calculate the areas separately.
This is the case when the function has a zero in the interval.
i

Method

  1. Determine zeros and find intervals
  2. Calculate definite integrals for each interval
  3. Determine area

Example

Calculate the area between the graph of the function $f(x)=x^2+2x$ and the x-axis over the interval $[-1; 1]$

  1. Find intervals

    First, calculate the zero(s) of the function.
    $x^2+2x=0$
    (Solve quadratic equation, e.g. remove brackets)
    $x(x+2)=0$
    $x_{N_1}=0$ and $x_{N_2}=-2$

    $x_{N_1}=0$ is in the interval $[-1; 1]$. Therefore, the area must be divided into two parts:
    $A_1$ over $[-1;0]$
    $A_2$ over $[0;1]$
  2. Find and calculate definite integrals

    For both intervals, an integral must now be calculated.
    $\int_a^b f(x) \, \mathrm{d}x$ $= [F(x) + C]_a^b$ $= F(b) - F(a)$
    $F(x)=\frac13x^3+x^2$

    $A_1$ over $[-1;0]$:
    $\int_{-1}^0 (x^2+2x) \, \mathrm{d}x$ $= [\frac13x^3+x^2]_{-1}^0$ $= \frac13\cdot0^3+0^2 -$ $\frac13\cdot(-1)^3+(-1)^2$
    $=0-\frac23$ $=-\frac23$


    $A_2$ over $[0;1]$:
    $\int_0^1 (x^2+2x) \, \mathrm{d}x$ $= [\frac13x^3+x^2]_0^1$ $= \frac13\cdot1^3+1^2 -$ $\frac13\cdot0^3+0^2$
    $=\frac43-0$ $=\frac43$
  3. Determine area

    Now the area of each partition has to be determined and then added.
    $A_1=|\int_{-1}^0 f(x)\,\mathrm{d}x|$ $=|-\frac23|$ $=\frac23$
    $A_2=\int_0^1 f(x)\,\mathrm{d}x$ $=\frac43$

    $A=A_1+A_2$ $=\frac23+\frac43=2$