Intersection and Zero of a function
Intersections with the x-axis
At the intersection with the x-axis, $y=0$. The general form is:
$S_x(x_N|0)$
$x_N$ is called the zero of a function.
i
Method
- Set function equal to zero: $x_N\Leftrightarrow f(x_N)=0$
 - Solve the equation
 - Specify intersection(s)
 
Example
$f(x)=x^2-9$
- 
Set function equal to zero
$x^2-9=0$ - 
Solve equation for $x$
$x^2-9=0\quad|+9$
$x^2=9\quad|\pm\sqrt{}$
$x_{ N1 }=+\sqrt{ 9 }=3$
$x_{ N2 }=-\sqrt{ 9 }=-3$ - 
Specify intersections
$S_{x1}(3|0)$ und $S_{x2}(-3|0)$ 
Intersection with the y-axis
At the intersection with the y-axis, $x=0$. The general form is:
$S_y(0|f(0))$
!
Remember
A function can have at most one intersection with the y-axis.
i
Method
- Calculate $f(0)$
 - Specify intersection
 
Example
$f(x)=x^2-9$
- 
Calculate $f(0)$
$f(0)=0^2-9=-9$ - 
Specify intersection
$S_{y}(0|-9)$